
Качественная система вентиляции устанавливается не на месяц, и даже не на год, поэтому к этому вопросу необходимо подойти со всей тщательностью и скрупулезностью. С чего начинать процесс выбора вентиляционной установки? Прежде всего, надо расчесать необходимые характеристики.

схема системы вентиляции

Приступая к выбору вентиляционного оборудования, прежде всего, обратите внимание на такие параметры:

- Необходимый воздухооборот (кб. м/ч)
- Рабочее давление (Па) и скорость движения воздушного потока (м/с).
- Уровень шума, который считается допустимым (дБ).
- Мощность калорифера (кВт).

Производительность по воздуху

Выбор системы вентиляции во многом зависит от результатов расчета ожидаемой производительности. Для того чтобы грамотно рассчитать этот параметр, нужно иметь перед собой поэтажный план помещений с экспликацией. Чтобы система вентиляции работала эффективно, для начала необходимо определить оптимальную периодичность полного воздухообмена для каждого помещения. То есть задачей является расчет количества воздухообменов (абсолютная замена воздуха в помещении) в течение 60 минут. В нашем случае площадь помещения составляет 50 кв.м., высота потолка — 3 м, объем комнаты равен 150 кб. м., значит воздухообмен (двукратный) составляет 300 кб. м/ч. Кратность процесса воздухообмена может зависеть от многих факторов: предназначения помещения, численности людей, количества оборудования и т.д. Для жилых помещений в большинстве случаев вполне хватает одного воздухообмена, для офисных помещений требования возрастают до 2—3 воздухообменов в час.

После получения расчетных показателей воздухообмена для всех помещений их нужно суммировать, тем самым, устанавливая оптимальную производительность для системы вентиляции в целом. Для квартир этот показатель, как правило, колебаться от 100–800 кб. м/ч, для частных домов — 1000–2000 кб. м/ч, для офисных помещений 1000–10000 кб. м/ч.

Рабочее давление, скорость воздушного потока и уровень шума

Когда расчеты производительности вентиляции уже позади самое время приступить к работе над проектом воздухораспределительной сети, состоящей из воздуховодов, так называемых фасонных изделий и распределителей воздушных потоков. Создание проекта начинается с составления схемы расположения воздуховодов. После чего уже по ней производят расчеты по трем взаимосвязанным характеристикам (давлению, скорость движения воздуха и уровню шума).

Одной из основных характеристик идеального рабочего давления является мощность вентилятора. При ее вычислении также учитывается класс и тип воздушных распределителей, длина, диаметр и количество поворотов воздуховода. В том случае, если для вентилирования заданного помещения требуется воздуховод с большой длиной и значительным количеством поворотов, мощность вентилятора должна быть очень высокой. В противном случае

вентилятор

не сможет полноценно функционировать.

Оптимальная скорость потока воздуха также зависит от воздуховода, в частности от его диаметра. Значительное завышение скорости приводит к понижению давления и увеличению уровня шума, именно поэтому в домашних и офисных вентиляциях она ограничивается 13—15 м/с. Приобретать воздуховод, рассчитанный на чрезмерно заниженные скорости потока так же не следует, подобные установки очень громоздки, трудностей с их удачным монтажом не избежать. Проектирование систем вентиляции требует поиска компромисса между показателями идеальной мощности, уровнем шума вентилятора и диаметром воздуховодов.

Мощность калорифера

Учитывая производительность системы вентиляции, желаемую температуру воздуха на выходе и минимальную температуру наружного воздуха, можно вычислить оптимальную мощность калорифера. Согласно СНиП, температура воздуха, поступающего в

помещение, должна быть выше 16°C. Минимальная температура наружного воздуха зависит от конкретных климатических условий.

К примеру, в Московской области она составляет –26°C в зимний период (для расчёта был взят средний температурный показатель, самого холодного дня года в 13 часов по полудню). То есть, включенный на полную мощность **калорифер** должен иметь потенциал для нагрева воздуха на 40°C. Для квартирного помещения расчетная мощность калорифера, как правило, варьируется от 1 до 5 кВт, а для офисов этот показатель составляет 5–50 кВт.